

Tetrahedron Lerters, **Vol. 35, No. 35, pp. 6433-6436, 1994 Elsevier Science Ltd Printed in Great Britain cto4a4039/94 \$7.00+0.00**

0040-4039(94)01350-0

Spectroscopic Studies on Cyanocuprate-Catalyzed 3-Component Couplings: Understanding the Catalytic Cycle

Bruce **H. Lipshutz* and Michael R. Wood Department of Chemistry University of California. Santa Barbara, CA 93106 Fax: 995/993-4120**

Summary. Low temperature ¹H NMR analysis of a reaction mixture containing a vinylic zirconocene, MeLi,
Me3ZnLi, 20 mol % Me2Cu(CN)Li2 and an enone, reagents which together lead to the Michael delivery of a vinyl ligand, reveals the presence of a zinc enolate, the species likely to be *responsible for the subsequent alkylation* or aldol reaction as the final step in 3-component couplings.

In a recent report from these laboratories.¹ a new method for effecting 1,4-addition of a vinylic ligand (in 1) was described which proceeds through an initial hydrozirconation of a 1-alkyne and utilizes catalytic amounts of higher order cuprate Me₂Cu(CN)Li₂ (Scheme 1). It was proposed that the zincate² Me₃ZnLi present in the reaction mixture serves to transmetallate the initially formed copper enolate 2, thereby regenerating the catalyst. The upshot of such a ligand exchange, in principle, is the production a reactive zinc enolate 3,³ which should allow for further C-C bond **constructions. Indeed, when applied to the cyclopentenone system, both aldol and alkylation** reactions leading to 4 and 5, respectively, can be carried out completing this true 3-component coupling (3-CC) sequence.⁴ Alternatively, with an equivalent of Cp₂ZrMe₂ presumably present as

an outgrowth of the initial zirconocene-cuprate transmetallation, a zirconium enolate⁵ could be the predominent species, or perhaps a mix of both, as well as Zn or Zr enolates with ligands other than **methyl on the metal canters. To better understand the extent to which various species are present** and to assess the intermediate(s) likely to be responsible for the final coupling in this 6-step, 1-pot **process.4 we now describe spectroscopic experiments in an effort to gain insight regarding this remarkably efficient combination of reagents.**

An overview describing the complete sequence and listing the various species observed by ¹H NMR is illustrated in Scheme 2. *Italicized* chemical shift values under each organometallic **represent those recorded for individually prepared samples (i.e., Control experiments to establish the identity of compounds observed in the reaction mixture). Those 8 values in bold correspond to signals present in the reaction mixture at each stage of the multi-step sequencs. Thus. starting with vinyl zirconocene 10, MeLi supplies the methyl anion which replaces chloride on xirconium, giving** a signal at δ -0.39. The signal due to the cyclopentadienyl groups shifts from δ 6.28 to δ 6.11. The other two components, Me₂Cu(CN)Li₂, 8 (20 mol %) and Me₃ZnLi (7) were prepared from MeLi addition to CuCN (0.20 eq) and Me₂Zn (6), respectively. The Me₂Zn (8-1.06) signal disappears as **those for the cuprate 8 (a -1.56) and zincate 7 (s -1.30) grow in.**

Upon mixing 7, 8, and 9 at -78°, transmetallation ensues immediately, leading to the **complete loss of cuprate 8, while zincate 7 remains intact awaiting its role once the newly** generated mixed cuprate 12 has delivered its vinyl ligand to an enone (vide infra). The by-product of ligand exchange between 8 and 9 is Cp₂ZrMe₂ (13), which is clearly visible in an amount equal to that of the mixed cuprate 12 formed in situ (i.e., 20 mol %). Small amounts of lithio zirconate 11,⁶ **which disappear during the subsequent Michael addition. were also confirmed, suggesting further equilibration between 8 and 9, and possibly 7 as well.**

introduction of the enone begins the process of vinyiic iigand transfer and gives rise, as expected, to several new peaks in the 1 H **NMR spectrum. Fortunately, all of these signals are identifiable. Thus, in addition to 9 (prepared originally in excess) and 13 (which builds up from** continuous transmetallation between 8 and 9), singlets at δ -1.15, -1.42, and -1.44 are present. That **these are attributable to zinc enolate 15, copper enolate 14, and the lower order cyanocuprate 16,** respectively, can be unequivocally demonstrated again from individual preparations, the spectrum **of each being recorded under identical conditions of solvent (THF). reagent concentration, and** temperature (-78°) as used in the couplings. Authentic copper enolate 14 was obtainedvia vinyl ligand transfer to cyclopentenone, as illustrated in Scheme 3. Species 15, on the other hand, was **derived from trapping of 14 with MesSiCI, followed by regiospecific lithium enotate generation and** thence exposure to Me₂Zn (Scheme 4). The 8 values for the pure materials were virtually identical

to those found from the reaction mixture in all cases (Scheme 2). No other signals due to upfieid methyl groups or downfield Cp ligands were noted, further suggesting that a zirconium enolate is not present to any extent observable by 200 MHz NMR.

Lastly, quenching of the zinc enolate 15 with an aldehyde should after the signal at s-1.15 owing to the likely formation of chelate 18. In the event, upon introduction of hexanal at -78*, a new peak was observed at δ -1.07, with concommitant loss of signal due to the zinc enolate (Scheme 2).

From these experiments, it is concluded that (1) transmatallation between a higher order cyano-cuprate and vinylic zirconocene is indeed rapid and complete at -78°; (2) zincate Me₃ZnLi **supplies the methyl iigand to copper which allows for the catalytic cycle to proceed as vinyiic** zirconocene is converted to Cp₂ZrMe₂; (3) once the cuprate 1,4-addition is complete, copper situates itself (based on integrations of NMR signals) in part as a copper enolate 14 (14 of 20 mol **%) and to a lesser degree (8 of 20 mol** %) **as a lower order cyanocuprate 18; after the 3CC, the same enoiate 14 remains, rather than forming cheiate 17, while the signal for 18 disappears; (4) the M@ZnLi used to effect transmetallation of the copper enolate gives rise predominantiy to a zinc enolate rather than a zirconium enolate, which as the major species in solution is likely to be** responsible for the final aldol or alkylation step.

Acknowledgement. We warmly thank the NSF (CHE 93-03883) for financial support of our programs.

References and Notes

- **1.** Lipshutz, B.H., Wood, M.R., *J. Am. Chem. Soc.*, 1993, 115, 12625.
- **Isobe, M., Kondo, S., Nagasawa, N., Goto, T., Chem. Lett., 1977, 679.**
- **3:** Noyori, R., Suzuki, M., *Chem. Tracts; Org. Chem.*, 1990, 3, 173.
- **Lipshutz. B-H., Wood, MR., J. Am.** *Chew. Sot.* **submitted.**
- **54: Evans, D.A., wee, L.R.,** *Tefmhedtvn L&t.,* **1999,2Q, 3975.**
- **8. The observation that 11 is formed from 8 + 9 strongly suggested that the combination of species 10 and an equivalent of cuprate 8 woufd equilibrate to a mix of 9 + 16 and predominantly 13 + 19, the latter cu** precisely what is observed by ¹H NMR, wh **e being responsible for the** 1 **A-additons. This is , which settles the issue raised in some of our earlier** transmetallation work where R in 19 contains an electrophilic center; cf. Lipshutz, B.H., Keil, **R.,** *J. Am. Chem. Soc.***, 1992, 114, 7919.**

(Received in USA **1** *June* **1994;** *revised 7 July 1994; accepted 1 I July 1994)*